
Clinical Neuro-Optic Research Institute

Eye Capture App Functions

App Function: The live switching camera feature

This feature allows your phone to seamlessly switch between different camera sensors (e.g., front-facing, rear-facing, or additional lenses like ultrawide or telephoto) during runtime without interrupting the camera session or requiring a restart of the preview. When combined with the mirror on/off functionality, it provides a powerful and flexible setup for applications like photographing the human eye.

Benefits of Using Live Switching with Mirror On/Off for Eye Photography

Combining live camera switching with mirror on/off provides several practical benefits for capturing images of the human eye, especially for darker eyes or precise iris shots:

1. Flexibility for Selfie vs. Assisted Photography:

- Front Camera with Mirror On: Ideal for users photographing their own eye (e.g., for a selfie-style iris shot). Mirroring makes the preview intuitive, as the left eye appears on the left, simplifying alignment when using focus On Point function to lock onto the iris.
- Rear Camera (No Mirroring): Offers higher resolution and better low-light performance (crucial for darker eyes). Live switching lets you toggle to the rear camera if someone else is holding the phone for a more precise shot, with no mirroring needed for accurate orientation.
- Benefit: Users can choose the best camera for the situation without closing the app, and mirroring ensures the front camera feels natural for self-captures.

2. Enhanced User Experience:

- Live switching means users can experiment with both cameras in real-time to find the best setup for lighting and focus. For darker eyes, the rear camera's superior sensor (often with larger apertures like f/1.8) captures more detail, while the front camera with mirroring is easier for solo use.
- Example: A user starts with the front camera (mirrored) to frame their eye, then switches to the rear camera for a sharper image, all while maintaining focus on the iris via focus On Point function.

3. Optimized for Different Use Cases:

- Casual Photography: Mirror on with the front camera is user-friendly for quick eye selfies, paired with live filters to enhance darker iris details.
- Professional/Biometric Use: Switching to the rear camera with mirror off ensures accurate orientation for applications like iris recognition or medical imaging, where true left-right positioning matters.
- Benefit: The combination supports both casual and precise use cases without needing separate apps or workflows.

4. Improved Focus and Framing for Eyes:

- Live switching lets you compare front and rear camera performance instantly. For example, if the front camera struggles to focus on a darker eye due to lower resolution or poor lighting, switch to the rear camera for better results.
- Mirroring on the front camera helps users align the tap-to-focus precisely on the iris, as the preview matches their natural perception.
- Benefit: Faster, more accurate focusing on the eye, especially when combined with zoom (e.g., 1.5x-2x) and live filters for contrast.

App Function: Mirror on/off

The mirror on/off functionality controls whether the front-facing camera's preview and captured images are mirrored (flipped horizontally). This is particularly relevant for capturing pictures of the human eye, as it affects how the eye appears in the preview and final photo, especially when using the front camera for selfies or close-up shots.

What Does Mirror On/Off Do?

Mirror On:

- When enabled, the front camera's preview and/or captured image is flipped horizontally, making it appear as if you're looking in a mirror.
- This is the default behavior for most front-facing camera apps (e.g., selfie apps) because it feels intuitive: your left eye appears on the left side of the preview, matching how you see yourself in a physical mirror.
- Example: If you're photographing your own eye with the front camera, the left eye in the preview will appear as your left eye, not reversed.

Mirror Off:

- When disabled, the front camera's preview and captured image show the true orientation, as if someone else were looking at you.
- This means the image is not flipped horizontally: your left eye appears on the right side of the preview or photo, matching the actual perspective of the camera sensor.
- This is how rear cameras typically work and is useful for accurate representations (e.g., for biometric eye scans or professional photography).

Impact on Eye Photography

When capturing pictures of the human eye (e.g., for iris details or darker eyes), the mirror setting can affect both usability and output:

- Using the Front Camera (e.g., for selfies of your own eye):
 - Mirror On: Makes it easier to frame the shot because the preview matches your natural perception (like looking in a mirror). For example, if you tilt your head left, the preview shows your head tilting left, simplifying alignment for focusing on the iris with focus On Point function.
 - Mirror Off: The preview shows the true orientation, which can feel
 counterintuitive (e.g., tilting your head left makes the preview show it tilting
 right). However, this ensures the final image matches the real-world perspective,
 which might be critical for applications like iris recognition or medical
 documentation.
 - Recommendation: Use mirror on for ease of use during framing and focusing, especially if the user is photographing their own eye. Switch to mirror off if you need the final image to reflect the true orientation (e.g., for sharing or analysis).

- Using the Rear Camera:
 - The mirror setting has no effect, as rear camera images are not mirrored by default. This is ideal for high-quality eye photography (since rear cameras typically have better sensors) and ensures accurate orientation without additional configuration.
 - Example: If photographing someone else's eye, the rear camera with focus On Point function and zoom will give sharp, non-mirrored results.
- Darker Eyes Consideration:
 - The mirror setting doesn't directly affect image quality or focus for darker eyes, but it impacts how you align the shot in the preview. For precise focus on the iris (using focus On Point function), mirror on can make it easier to tap the correct spot in the preview when using the front camera.
 - Pair with live filters to enhance darker iris details, regardless of mirroring.

Conclusion

The mirror on/off function in controls whether the front camera's preview and photos are horizontally flipped, making it easier to frame eye shots (mirror on) or ensuring accurate orientation (mirror off). For photographing the human eye, especially with the front camera, mirror on is recommended for intuitive alignment when focusing on the iris with the Focus On Point tap function. For rear camera shots or applications needing true orientation, keep mirroring off or irrelevant. Combine with zoom and live filters for darker eyes as needed.

App Function: The auto focus function

This Flutter plugin, particularly through methods like focus On Point function and continuous auto focus modes, is highly beneficial for photographing the human eye, especially for capturing detailed images of the iris, including darker eyes.

Benefits of Auto Focus in for Eye Photography

- 1. Precise Focus on the Iris:
 - How It Works: The focus On Point function method allows you to tap a specific point in the camera preview (using normalized preview coordinates) to lock focus on the eye's iris. This uses the device's native auto focus system (phase-detection or contrast-detection), which quickly adjusts the lens to maximize sharpness at the selected point.
 - Benefit for Eye Photography: The iris has high-contrast patterns (e.g., radial textures, pupil edge), making it an ideal target for auto focus to lock onto. This ensures crisp details, crucial for capturing the intricate structures of darker eyes, which may appear flat without precise focus.
 - Example: Tapping the iris in the preview triggers focus On Point(x: 0.5, y: 0.5) to focus exactly where needed, avoiding blur from focusing on eyelashes or the sclera.

Handles Challenging Conditions for Darker Eyes:

- How It Works: Auto focus leverages phase-detection (on modern devices) or contrast-detection to find the sharpest focus point, even in low-contrast scenarios like darker irises (e.g., deep brown or black), which absorb more light and can be harder to focus on.
- Benefit: For darker eyes, auto focus ensures the camera prioritizes the subtle textures of the iris over surrounding areas. Pairing it with live filters or exposure adjustments enhances contrast, making auto focus more reliable.
- Practical Tip: Use good lighting (e.g., a ring light or soft LED) to boost contrast, as low light can cause focus hunting.

Seamless Integration with Live Camera Switching:

- How It Works: The live camera switching allows toggling between front and rear cameras without interrupting the preview. Auto focus settings, including focus On Point function, persist across switches or can be reapplied instantly.
- Benefit: For eye photography, you can start with the front camera (easier for self-photography, especially with mirror on) and switch to the rear camera for better resolution and low-light performance, reapplying auto focus to the iris each time. The rear camera's superior sensor (e.g., f/1.5 aperture vs. f/2.0 on front) ensures sharper focus on darker eyes.

Enhanced User Experience with Mirror On/Off:

- How It Works: The mirror on/off feature makes the front camera's preview intuitive for self-photography (mirror on) or accurate for professional use (mirror off). Auto focus via focus On Point function works seamlessly with either setting, ensuring precise focus on the eye regardless of orientation.
- Benefit: For self-photography of the eye, mirror on aligns the preview with the user's natural perception, making it easier to tap the iris for auto focus. For assisted photography (e.g., using the rear camera), mirror off ensures the image matches real-world orientation, and auto focus still locks onto the iris accurately.

Support for Close-Up Shots with Zoom:

- How It Works: Auto focus works in tandem with the zoom functionality, allowing you to zoom in (e.g., 1.5x-2x) for a closer view of the eye while maintaining sharp focus.
- Benefit: Zooming in frames the iris tightly, and auto focus ensures the camera adjusts to the narrowed depth of field, keeping the eye sharp. This is especially useful for darker eyes, where details need to stand out. However, note the minimum focus distance (typically 5-10 cm) limits extreme macro shots without a clip-on lens.

Continuous Auto Focus for Dynamic Scenarios:

- How It Works: Supports continuous auto focus which adjusts focus in real-time as the subject (e.g., the eye) or camera moves slightly.
- Benefit: For eye photography, continuous auto focus is useful if the subject blinks or shifts slightly, ensuring the iris stays sharp without needing repeated taps. This is particularly helpful for darker eyes in variable lighting.

Specific Advantages for Darker Eyes

Darker eyes (e.g., deep brown or black irises) pose challenges due to lower contrast and light absorption, but the auto focus excels here:

- High-Contrast Detection: Auto focus locks onto the pupil-iris boundary or subtle iris textures, even in darker eyes, by leveraging phase-detection's sensitivity to edges.
- Integration with Filters: Live filters can boost brightness and contrast in real-time, aiding auto focus by making darker irises more distinguishable.
- Lighting Support: Auto focus performs better with good lighting. For darker eyes, use external soft lighting to illuminate the iris, ensuring auto focus locks quickly and accurately.

Conclusion

The auto focus function is a game-changer for eye photography due to its precision focus On Point function, reliability across devices, including IOS and integration with live camera switching and mirror on/off. It ensures sharp iris details, even for darker eyes, by locking focus quickly and adapting to lighting conditions when paired with filters or exposure tweaks. Benefits include:

- Precision: Locks onto the iris for crisp details.
- Ease of Use: Intuitive tap-to-focus simplifies self-photography.
- Flexibility: Works with front/rear cameras and mirroring for varied use cases.
- Enhanced for Darker Eyes: Combines with filters and lighting to overcome low contrast.

App Function: Exposure level

The exposure level feature allows you to adjust the camera's exposure (brightness) in real-time, which is highly beneficial for eye photography, especially when capturing detailed images of the human eye, including darker irises. This feature controls how much light the camera sensor captures, directly impacting the visibility of iris textures and overall image quality.

Why the Exposure Level Feature Helps in Eye Photography

The exposure level feature adjusts the camera's exposure compensation, typically measured in stops (e.g., -2.0 to +2.0 EV), allowing you to brighten or darken the image by modifying the sensor's sensitivity (ISO) or shutter speed. For eye photography, this is critical because:

- Human Eye Challenges: The iris, especially in darker eyes (e.g., deep brown or black), absorbs light, making it hard to capture fine details like radial patterns or subtle color variations without proper lighting.
- Lighting Variability: Eye photography often occurs in varied lighting conditions (e.g., indoor, low light, or harsh shadows), and exposure adjustments ensure the iris is well-lit without overexposing the surrounding sclera or skin.
- Native Integration: The Exposure Level Feature leverages native camera APIs (iOS's AVFoundation and Android's Camera2) to set exposure dynamically, ensuring smooth, hardware-accelerated adjustments that work in real-time during the preview.

The Set Exposure Level method lets you fine-tune exposure programmatically, and you can also enable auto-exposure or lock exposure at a specific point for consistency, making it ideal for precise applications like eye photography.

Specific Benefits for Eye Photography

Here's why and how the exposure level feature enhances eye photography, particularly for darker eyes:

Enhanced Visibility of Darker Irises:

- How It Works: Darker irises (e.g., brown or black) have low contrast due to light absorption, making textures hard to discern. Increasing exposure brightens the iris, revealing subtle details like radial patterns or undertones (e.g., amber flecks).
- Benefit: For darker eyes, a slight positive exposure adjustment ensures the iris stands out without post-processing. This is critical for both aesthetic shots and applications like iris recognition, where detail is paramount.

Improved Auto Focus Accuracy:

- How It Works: The auto focus relies on contrast detection or phase detection to lock onto
 the iris. Darker eyes in low light can confuse these systems due to insufficient contrast.
 Boosting exposure increases the visible contrast between the pupil and iris, aiding focus
 accuracy.
- Benefit: Exposure adjustments make it easier for auto focus to lock onto the iris, reducing focus hunting and ensuring sharp details, especially for darker eyes.

Balancing Lighting for Even Illumination:

- How It Works: Eye photography often involves close-up shots where lighting can create uneven shadows (e.g., on the sclera or eyelids). Exposure level adjustments allow you to compensate for under- or overexposed areas in real-time.
- Benefit: You can brighten the iris without overexposing the sclera (white part of the eye) or skin, maintaining natural colors and avoiding harsh reflections. For darker eyes, this ensures the iris is well-lit while keeping the image balanced.

Integration with Live Camera Switching:

- How It Works: The live camera switching lets you toggle between front and rear cameras. The rear camera typically has a larger aperture (e.g., f/1.5 vs. f/2.0 on front), capturing more light, but exposure adjustments are still needed for optimal results, especially in dim conditions.
- Benefit: For darker eyes, switch to the rear camera for better low-light performance and adjust exposure to highlight iris details. Exposure settings persist or can be reapplied after switching, ensuring consistency.

Synergy with Mirror On/Off:

- How It Works: The mirror on/off feature makes front-camera previews intuitive for self-photography. Exposure adjustments enhance the preview's visibility, ensuring users can see and focus on their eye clearly when mirroring is enabled.
- Benefit: For self-photography of the eye (e.g., front camera with mirror on), increasing exposure ensures the iris is visible in the preview, making it easier to tap for Focus On Point. For professional shots (mirror off or rear camera), exposure ensures accurate lighting for biometric or medical use.

Compatibility with Live Filters:

- How It Works: The live filters enhance contrast and brightness. Exposure level adjustments complement filters by providing a baseline brightness boost, ensuring filters don't overprocess or introduce noise.
- Benefit: For darker eyes, combining a slight exposure increase with a contrast-enhancing filter maximizes iris detail without unnatural artifacts. This is especially useful in low-light settings where darker irises need extra illumination.

Real-Time Feedback for Precision:

- How It Works: Exposure adjustments are applied instantly to the live preview, allowing users to see the effect on the eye before capturing the photo.
- Benefit: Users can fine-tune exposure to get the perfect balance for the iris, especially for darker eyes, ensuring details are visible without overexposure. This reduces trial-anderror compared to post-processing.

Specific Advantages for Darker Eyes

Darker irises pose unique challenges due to their tendency to absorb light, but the exposure level feature addresses these effectively:

- Increased Brightness: A positive exposure adjustment (e.g., +0.3 to +0.7 EV) brightens the iris, revealing subtle textures and colors (e.g., brown undertones) that might otherwise appear flat.
- Reduced Noise: Unlike heavy post-processing, the exposure control uses hardware-level
 adjustments, minimizing noise compared to software brightening, which is critical for
 clean iris shots.
- Auto Focus Synergy: Brighter irises improve contrast, aiding focusOnPoint or continuous auto focus to lock onto details accurately.

Conclusion

The exposure level feature is a powerful tool for eye photography, particularly for darker eyes, because it:

- Reveals Iris Details: Brightens darker irises to show textures and colors.
- Aids Auto Focus: Enhances contrast for precise focus on the iris.
- Balances Lighting: Ensures even illumination without overexposure.
- Integrates Seamlessly: Works with live camera switching, mirror on/off, and live filters for a polished workflow.

For your use case, use a moderate exposure boost (± 0.3 to ± 0.7 EV) with the rear camera for darker eyes to maximize detail, or the front camera with mirror on for intuitive self-photography.

App Function: Device Flash Support Feature

Eye photography, often called iris or macro eye photography, involves close-up captures of the eye's intricate details—like the colorful iris patterns, pupil, sclera (the white part), and subtle textures of the cornea. This niche requires extreme precision due to the eye's tiny scale (e.g., the iris is typically 11-12mm in diameter) and its reflective, moist surface. Natural light alone often falls short, leading to underexposed, blurry, or distorted shots.

Enter flash: a burst of artificial light that addresses these challenges head-on. The "Device Flash Support" feature enables developers to programmatically control the device's built-in LED flash (on Android/iOS).

This includes modes like auto, on, off, or torch (constant light), allowing seamless integration into apps like the Eye Capture for toggling flash during shots. Without this support, apps might default to inconsistent device handling, resulting in unreliable illumination for delicate eye captures.

Why Device Flash Support is Crucial for Eye Photography

Flash isn't just a low-light fix—it's essential for achieving sharp, vibrant, and artifact-free eye photos. Here's why, broken down by key benefits:

1. Provides Intense, Even Illumination for Tiny Details:

- The eye's features are minuscule and often in shadow (e.g., under eyelids or brows). Ambient light rarely penetrates evenly, causing noise or lost details in the iris's radial patterns.
- Flash delivers a powerful, daylight-balanced burst (~5500K color temperature) that floods the cornea and iris uniformly, revealing textures invisible in natural light. In enabling flash via FlashMode.on ensures consistent exposure, even in varied environments like indoor clinics or outdoor portraits.
- Pro Tip: Use it with macro lenses (e.g., 100mm+) to highlight sclera veins or iris crypts without overexposing the pupil.

2. Freezes Micro-Movements to Prevent Blur:

- Eyes aren't static—blinks, subtle shifts, or tears can ruin a shot in 1/200th of a second. Handheld macro photography amplifies shake, demanding shutter speeds >1/125s.
- Flash's ultra-short duration (1/200s or less) "freezes" these motions, allowing smaller apertures (e.g., f/8-f/16) for deeper depth of field. This captures the entire eye in focus, from cornea to iris edge—impossible with slow ambient exposures.
- In apps built with Camera device flash support lets users trigger this on-demand, syncing with autofocus for tack-sharp results. Without it, you'd rely on tripods or continuous lights, which drain battery and complicate mobile setups.

3. Reduces Reflections and Artifacts for Cleaner Shots:

- The eye's curved, watery surface acts like a mirror, bouncing light into the lens and creating harsh corneal flares or red-eye (from retinal blood reflection).
- Controlled device flash minimizes these: Off-axis bursts reduce red-eye, while
 diffused modes (e.g., torch for softer fill) avoid specular highlights. This is vital
 for medical or artistic eye photography, where reflections obscure diagnostics or
 aesthetics.
- Bonus: In low light, flash contracts pupils slightly (via pre-flash in auto mode), opening the iris for more pattern detail without dilation-induced blur.

4. Enables Versatile, Portable Workflows:

- Eye photography often happens spontaneously (e.g., self-portraits or quick clinical scans). Device flash support makes it app-native—no external rigs needed—supporting features like your app's selfie-mode, exposure levels, and tap-to-focus.
- It balances indoor/outdoor use: Fill harsh sunlight shadows on the sclera or boost dim rooms for consistent color accuracy.

Challenge in Eye Photography	y Without Flash	With Device Flash Support
Low Detail Visibility	Shadows hide iris textures; noisy ISO needed.	Even burst reveals crypts and colors vividly.
Motion Blur	Blinks/shake softens edges; slow shutters.	Freezes action for f/11+ depth across the eye.
Reflections/Red-Eye	Harsh flares or bloody pupils in low light.	Controlled modes minimize artifacts; pre-flash contracts pupils.
Portability	Bulky continuous lights or tripods required.	Built-in LED integration for on-the-go apps.

Potential Drawbacks and Best Practices

Flash can be harsh if misused—direct bursts might wash out colors or cause discomfort. Mitigate with FlashMode.auto (adapts to scene) or diffusion (e.g., app filters). For eyes, position the device 6-12 inches away and use ring-flash alternatives if red-eye persists. Always prioritize subject comfort; brief bursts are eye-safe but avoid prolonged torch mode.

In summary, Camera flash support transforms eye photography from a finicky hobby into a reliable craft. It empowers apps like yours to deliver pro-level results—crisp, illuminated eyes that pop with personality—making it indispensable for creators, optometrists, or anyone chasing that hypnotic iris close-up.

App Function: 4:3 Ratio Cropping Feature

The cropping of images to a 4:3 aspect ratio is highly beneficial for maintaining consistent image size in scientific research, machine learning, and eye analysis software applications, particularly when capturing detailed images of the human eye, such as the iris. This standardization addresses challenges posed by the variable pixel sizes of smartphone images and mitigates risks like false positives in pupil detection when importing into eye analysis software, which often has limitations in handling inconsistent image sizes.

Why Cropping to a 4:3 Aspect Ratio is Important

The 4:3 aspect ratio (e.g., 800x600, 1600x1200 pixels) is a widely used standard in photography and imaging, particularly for scientific and analytical applications like eye analysis, due to its balance of width and height, which closely matches the natural shape of the human eye and iris. Cropping to this ratio ensures uniformity across images, which is critical for the following reasons:

1. Consistency in Image Dimensions:

- Smartphone Variability: Smartphone cameras produce images in various aspect ratios (e.g., 4:3, 16:9, or 1:1) and pixel resolutions (e.g., 12MP at 4032x3024, 8MP at 3264x2448, or others), depending on the device, camera mode, or settings. For example, an iPhone 14 might capture at 4:3 natively, while a Samsung Galaxy might default to 16:9.
- Importance: Scientific research and machine learning require standardized input data to ensure reliable comparisons and analysis. Cropping all images to a 4:3 ratio (e.g., resizing to a fixed 1600x1200 pixels) eliminates variability, ensuring all iris images have the same proportions and resolution for consistent processing.
- Eye analysis Software: Many eye analysis programs expect images in a specific aspect ratio (often 4:3) or resolution to align with their analysis algorithms. Non-standard sizes can lead to stretching, compression, or misalignment, causing errors in feature detection.

2. Reducing False Positives in Pupil Detection:

- Problem with Variable Sizes: Eye analysis software often uses automated algorithms to detect the pupil and iris boundaries for analysis (e.g., identifying patterns for health diagnostics). Inconsistent image sizes or aspect ratios can distort the pupil's apparent size or shape, leading to false positives in pupil detection (e.g., misidentifying the pupil's edge or confusing it with other dark areas, especially in darker irises).
- How 4:3 Helps: Cropping to a 4:3 ratio ensures the pupil and iris are proportionally consistent across images, aligning with the software's expected input. For example, a 4:3 image at 1600x1200 pixels provides enough resolution for precise boundary detection while maintaining a standardized shape that matches the eye's natural geometry.
- Eye analysis Software Limitations: Many eye analysis programs lack robust image size correction or normalization. If an image is too large (e.g., 4000x3000) or in a different aspect ratio (e.g., 16:9), the software may fail to scale it properly, leading to inaccurate pupil or iris mapping. Cropping to 4:3 preemptively addresses this.

3. Optimizing Machine Learning Models:

- Training Data Uniformity: Machine learning models for iris recognition or eye analysis require consistent input sizes to train effectively. Variable aspect ratios or resolutions can introduce noise, reducing model accuracy or requiring complex preprocessing.
- Benefit of 4:3: Cropping to a 4:3 ratio standardizes the input data, simplifying preprocessing and ensuring the model focuses on iris features (e.g., texture, color) rather than compensating for dimensional differences. For example, a dataset of 4:3 images at 1600x1200 ensures all irises are scaled similarly, improving feature extraction for pupil detection or pattern analysis.
- Darker Eyes: For darker irises, where subtle textures are harder to discern, consistent sizing ensures the model receives clear, uniform inputs, reducing errors in low-contrast scenarios.

4. Compatibility with Scientific Standards:

- Standardization in Research: Scientific studies, especially in fields like eye analysis or ophthalmology, rely on standardized image formats to compare results across subjects or studies. The 4:3 ratio is a common choice because it balances detail and file size, fitting well with the eye's shape and typical imaging requirements.
- Benefit: Cropping to 4:3 ensures your images meet these standards, facilitating collaboration, publication, or integration with existing datasets. For example, a 4:3 image at 1600x1200 pixels provides sufficient detail for analyzing iris patterns without excessive file sizes that slow down processing.

5. Improved Workflow Efficiency:

- Streamlined Processing: Cropping to a 4:3 ratio during capture or preprocessing reduces the need for manual resizing or correction later, saving time in research or clinical workflows.
- Eye analysis Software Integration: By matching the expected input format, 4:3 images import seamlessly into eye analysis software, avoiding errors or manual adjustments that could introduce inconsistencies.

Integration of features, such as auto focus, exposure level, live camera switching, and mirror on/off, complement the process of capturing and cropping eye images to a 4:3 ratio. Here's how they work together:

Auto Focus:

- Benefit: Ensures the iris is sharp, maximizing detail in the 4:3 cropped region. For darker eyes, precise focus on the iris (as discussed earlier) enhances texture visibility, which is critical for accurate pupil detection in eye analysis software.
- Cropping Synergy: A sharply focused iris in a 4:3 crop provides high-quality input for machine learning or eye analysis, reducing false positives by ensuring clear pupil-iris boundaries.

Exposure Level:

- Benefit: Brightens darker irises to reveal textures, ensuring the 4:3 cropped image contains visible details. Proper exposure prevents the pupil from blending into the iris, reducing false positives in detection.
- Cropping Synergy: A well-exposed 4:3 image ensures consistent lighting across datasets, critical for machine learning models and eye analysis software that rely on uniform illumination.

Live Camera Switching:

- Benefit: Allows switching to the rear camera for higher resolution (e.g., 12MP vs. 8MP on front), producing detailed images that retain quality after cropping to 4:3. This is especially useful for darker eyes, where higher resolution aids detail capture.
- Cropping Synergy: Rear-camera images cropped to 4:3 (e.g., from 4032x3024 to 1600x1200) maintain high detail, meeting eye analysis software requirements and reducing resizing errors.

Mirror On/Off:

- Benefit: For front-camera selfies, mirror on makes framing intuitive, but mirror off ensures accurate orientation for scientific use. Cropping to 4:3 post-capture standardizes the output regardless of mirroring.
- Cropping Synergy: A 4:3 crop corrects any orientation issues from mirroring, ensuring the final image aligns with eye analysis software expectations (e.g., true left-right pupil positioning).

Addressing Smartphone Image Variability and Eye Capture Limitations

- Smartphone Image Variability:
 - Smartphones produce images with diverse pixel sizes (e.g., 4032x3024, 3264x2448, or 1920x1080) and aspect ratios (4:3, 16:9, etc.), depending on the device, camera app, or user settings. For example, an iPhone might default to 4:3 at 12MP, while an Android device might use 16:9 for video-friendly output.
 - Without cropping, these variations complicate scientific research (e.g., comparing iris patterns across subjects) and machine learning (e.g., training models on inconsistent inputs). For eye analysis, variable sizes can misalign pupil detection, as algorithms may misinterpret scaled or distorted images.

• Eye analysis Software Limitations:

- Many eye analysis programs have fixed input requirements (e.g., 4:3 at 1600x1200 or similar) and lack robust image size correction. If an image is too large or in a different ratio, the software may:
 - Stretch or compress the image, distorting the pupil or iris.
 - Fail to detect the pupil correctly, leading to false positives (e.g., mistaking a shadow or eyelash for the pupil edge).
 - Reject the image if it exceeds size limits or doesn't match expected proportions.
- Cropping to 4:3 ensures compatibility, reducing these risks and aligning with the software's analysis grid, which often maps iris features to a standardized coordinate system.

• False Positives in Pupil Detection:

- In darker eyes, the pupil and iris have low contrast, making boundary detection challenging. If the image size or aspect ratio varies, scaling errors can exaggerate this, causing the software to misidentify the pupil's edge or confuse it with other dark areas (e.g., eyelashes or shadows).
- A 4:3 crop at a consistent resolution (e.g., 1600x1200) ensures the pupil's proportions are predictable, improving detection accuracy and reducing false positives.

Benefits Summary for Scientific Research, Machine Learning, and Eye Analysis

- Scientific Research: A 4:3 ratio ensures consistent image proportions, enabling reliable comparisons of iris patterns across subjects or studies. It aligns with imaging standards, facilitating publication and data sharing.
- Machine Learning: Uniform 4:3 images simplify preprocessing, improve model training accuracy, and ensure consistent feature extraction for pupil and iris analysis, especially for darker eyes where contrast is critical.
- Eye analysis Software: Cropping to 4:3 matches expected input formats, reducing false positives in pupil detection and overcoming software limitations in size correction. It ensures accurate mapping of eye features for diagnostic purposes.

Conclusion

Cropping eye images to a 4:3 aspect ratio is crucial for scientific research, machine learning, and eye analysis software because it standardizes image dimensions, reduces variability from smartphone cameras, and mitigates risks of false positives in pupil detection due to inconsistent sizes or software limitations. Combined with features like auto focus, exposure level, live camera switching, and mirror on/off, you can capture high-quality, well-exposed iris images and crop them to 4:3 (e.g., 1600x1200) for seamless integration into analytical workflows. For darker eyes, exposure adjustments and rear-camera usage enhance detail, while 4:3 cropping ensures compatibility and accuracy.

To Do List:

- On-device eye detection in Flutter (for real-time capture guidance).
- Python backend for parameter extraction (rebuilt Bexel logic).
- Integration via API or on-device inference.

Current Version 1.6 -October 10, 2025

Clinical Neuro-Optic Research Institute: https://cnri.edu